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Abstract. To investigate the role of fluctuations in diffusion-limited growth we apply the 
noise reduction algorithm to the problem of two-dimensional deposition on a substrate 
consisting of a straight line. We consider the scaling of the height and the width of trees 
growing on the square lattice. For the sizes studied we find two length scales characterised 
by different exponents depending on the noise reduction parameter m. Using these 
exponents the effective fractal dimension De, of trees is calculated and for m >> 1 we obtain 
De*;= 1.57. The density profile in the direction of growth and the scaling properties of the 
lateral correlation function are also determined. 

1. Introduction 

Laplacian or diffusion-limited growth processes are of fundamental importance leading 
to a variety of interesting phenomena such as the development of fractal structures or 
the formation of diverse patterns (for recent reviews see Meakin (1987a), KertCsz 
(1987) and Vicsek (1987)). The widely studied related computer model is diffusion- 
limited aggregation (DLA) introduced by Witten and Sander (1981). Despite its sim- 
plicity this model shows a number of non-trivial features and it represents a useful 
basis for understanding a variety of non-equilibrium growth processes leading to 
complex geometries. Noise reduction (Tang 1985, SzCp er al 1985, KertCsz and Vicsek 
1986, Nittmann and Stanley 1986) has been shown to reveal a number of important 
features of DLA and we expect to obtain relevant information from the application of 
this method to the problem of diffusion-limited deposition. 

In the original DLA algorithm particles coming from ‘infinity’ are added, one at a 
time, to a growing cluster or aggregate (starting from a single seed) via random walks. 
One of the most important questions concerning DLA is the role of fluctuations and 
anisotropy in the formation of clusters and the related problem of their asymptotic 
shape. Initially DLA clusters were believed to be statistically self-similar isotropic 
fractals (Witten and Sander 1981, 1983, Meakin 1983) and the fractal dimension D 
was found to be independent of microscopic details such as the structure of the 
underlying lattice (Meakin 1983) or the sticking probability (Witten and Sander 1983). 
The open fractal-like structure of the clusters may be regarded as being a result of 
consecutive tip splitting and screening instabilities. However, later careful studies 
showed that the correlations in the clusters are not isotropic (Meakin and Vicsek 1985, 
Halsey and Meakin 1985, Kolb 1985) and that the overall shape of the cluster is affected 
by the lattice on which the clusters are grown (Meakin 1985, Ball and Brady 1985). 
Turkevich and Scher (1985) gave theoretical arguments for the idea that the DLA 
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process is not universal, i.e. the exponent D may depend on the lattice structure. Ball 
er a1 (1985) showed that anisotropic sticking probabilities lead to needle-shaped clusters 
with 

where H and W are the length and width of the needle respectively, s is its mass and 
vll( =$ in two dimensions) and vL( =f) are the corresponding exponents. 

On lattices of low symmetry very large clusters generated by the DLA process grow 
into star-like objects with elongated arms in the direction of the lattice axes (Meakin 
1986, Meakin et a1 1987). However, for smalt sizes the radius of gyration R,  grows 
with increasing cluster mass s according to 

R,-  S "  (3) 

where the exponent v( v = 1 /D)  is independent of the lattice and its value is close to 
v = 0.585 which was obtained for all attainable sizes in off-lattice simulations (Meakin 
and Sander 1985). Thus at early stages of the growth the fluctuations suppress the 
anisotropy and the lattice anisotropy becomes important only for very large sizes 
leading to clusters with an overall dendritic shape (Meakin et a1 1987). The actual 
shape of DLA clusters of a given size on lattices results from an interplay between 
anisotropy due to the underlying mesh and the fluctuations inherent in the growth 
algorithm (Kertisz and Vicsek 1986). 

During the last two years we have learned much about the asymptotic structure of 
DLA but the final answer is still lacking. One way to study the interplay between 
anisotropy and fluctuations is to generalise the algorithm in order to control the noise. 
This can be done by introducing Monte Carlo averaging as was independently proposed 
for diffusion-limited growth by Tang (1985) and Szip et a1 (1985). The reduction of 
noise has the effect that the lattice anisotropy shows up for much smaller sizes than 
in the original DLA and it appears that the asymptotic behaviour sets in at earlier stages 
of the growth (Kertksz and Vicsek 1986, Kertksz et a1 1986b). Using this model 
Thompson (1987) obtained data supporting the assumption that the asymptotics does 
not correspond to needles with two different exponents corresponding to (1) and (2) 
in accord with Nittmann and Stanley's (1986) observation on a related model. This 
result was later reinforced by Meakin (1987a, b). Ball (1986) used the noise-reduced 
DLA to illustrate ideas on the asymptotic number of branches in diffusion-limited 
aggregates. 

In most of the above studies the geometry corresponded to aggregates growing out 
of a single seed. However, from the physical point of view the diffusion-limited growth 
of deposits on flat substrates is also of considerable importance (Meakin 1983, Racz 
and Vicsek 1983, Jullien et a1 1984). In this case trees or clusters are growing on the 
substrates and their statistics and scaling behaviour are related to the fractal properties 
of the aggregates (Ram and Vicsek 1983, Vicsek 1983, Meakin and Family 1986). The 
exponent (Y governing the decay of the density in the growth direction is related to 
the fractal dimension: a = d - D. Kertisz et a1 (1986a) applied a noise reduction 
algorithm to a closely related model on the square lattice. The purpose of the present 
paper is to give an account of a systematic study of noise-reduced diffusion-limited 
deposition. 
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The rest of the paper is organised as follows. In  § 2 we define the model and 
describe the quantities of interest. The results are presented in § 3. Finally, in § 4, a 
discussion and summary is given. 

2. The model 

Diffusion-limited deposition in d dimensions is defined in the following way (Meakin 
1983, RAC, and Vicsek 1983). Initially the growth sites are positioned on a 
( d  - 1)-dimensional flat substrate (a line in two dimensions) of linear size L. The 
growth proceeds as randomly walking particles launched from a distant ( d  - 
1)-dimensional plane hit the surface of the deposit and stick to it. In practice it is not 
important to let the walkers start far from the growing object; only the level where the 
walkers are ‘killed’ has to be far enough away. The algorithm we used is an appropriate 
modification of Meakin’s (1985) ‘semi-lattice’ simulation of growing DLA clusters to 
this different geometry. Throughout this paper we are concerned with growth on the 
two-dimensional square lattice. 

Noise reduction (Tang 1985, SzCp et a1 1985) is introduced into this model in a 
natural way. Instead of adding the particle to the deposit immediately after it hits a 
growth site we keep a record of how many times each of the surface sites becomes a 
termination point for a random walker. After an unoccupied surface site has been 
contacted m times it is filled and the new unoccupied surface sites are identified. The 
scores (number of contacts) associated with these sites are set to zero. The scores 
associated with all of the other surface sites remain at their values before this event. 
In this form the algorithm is an application of the model used first by KertCsz and 
Vicsek (1986) to study the asymptotics of DLA clusters. 

Each realisation of our simulation leads to a forest of trees or clusters (collection 
of particles connected to the same site of the substrate via nearest neighbours). Our 
aim was to give a statistical analysis of these objects. For this purpose we examined 
the number of trees of a given size, the number of trees higher or broader than a certain 
value, the average length and width of the trees, the density as a function of the distance 
from the substrate and the lateral correlation function. 

3. Results 

As was discussed above, noise reduction alters the general appearance of DLA clusters 
and similar changes can also be observed in the case of deposits. This is demonstrated 
in figure 1, where a typical simulation of the noise-reduced diff usion-limited deposition 
process is shown. The structure displayed in this figure is reminiscent of dendritic 
patterns with stable tips and decreased level of randomness and is similar to the 
corresponding picture obtained by a related algorithm in KertCsz et al (1986a). The 
configuration consists of individual tree-like clusters with almost perfectly straight 
main stems and the fluctuations are manifested in the random distribution of the 
positions of trees and branches. As the noise is further reduced the trees become even 
more needle-like with a relatively smaller width and a decreased sidebranching rate. 

The two-dimensional simulations were carried out on a strip of width L=4096 
lattice units with periodic boundary conditions. In most cases the growth was stopped 
at a maximum height h,,, = 700 lattice units in order to satisfy the condition h,,, << L 
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4 L 

4096  l a t t i c e  units 

Figure 1. A typical deposit grown with the noise reduction algorithm. This dendritic 
structure was obtained by using periodic boundary conditions on a strip of width 4096 
lattice units and a noise reduction parameter m = 10. 

which corresponds to the limit in which the effects of the finite strip width can be 
neglected. In this limit the deposit is quasi-one-dimensional and translationally 
invariant along the deposition line. 

The distribution of particle density is very inhomogeneous in the direction perpen- 
dicular to the substrate. This can be studied by calculating the number of particles at 
a height h, p(  h )  = 2, p( h, x), where p( h, x)  = 1 if the lattice site at (h, x) is filled and 
is equal to zero otherwise. Figure 2 shows the dependence of the logarithm of the 
density distribution p ( h )  on log h for the three selected values of the noise reduction 
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Figure 2. The density p ( h )  as a function of the distance from the line onto which the 
particles are deposited. A strip width of 4096 lattice units and a deposit height of 700 was 
used to obtain the results shown in this and the subsequent figures. 
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parameter m. This figure suggests that, for h<< L, p ( h )  behaves as 

p ( h ) - h - "  (4) 
with a non-universal exponent (Y depending on m. 

In order to describe the statistics of clusters generated for various values of m we 
studied the following distribution functions which can be defined in the deposition 
model. First we determined N,(I) the number of clusters having a height of 1 lattice 
units and N J I )  which is the number of clusters of width 1. The results for m = 10 are 
shown in figure 3 which indicates that both quantities scale as a function of 1 with an 
exponent close to -1.8. Figure 4 shows the number of trees consisting of s particles, 
N ( s ) ,  which was found to decay as N ( s )  - s T  with 7 = -1.64. This value is very close 
to the corresponding exponent for the rn = 1 case (Meakin 1984). 

in il I 

Figure 3. The distribution of cluster heights N , ( / )  and cluster widths N , , ( / )  for m = 10, 
where Nh([) is the number of trees I lattice units in height and N,( I )  is the number of 
trees I lattice units in width. 

Icisl 

Figure 4. The dependence of the cluster size distribution function N ( s )  on the number of 
particles in a cluster for m = 10. 
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The above results suggest that there is a non-trivial scaling between the mass of a 
cluster and its linear sizes. Therefore we calculated the dependence of mean tree height 
( H )  and width ( W )  on the number of particles in the tree. A typical plot of these 
quantities is presented in figure 5. This figure represents clear evidence in favour of 
the assumption that, for the considered sizes, at least two independent scaling lengths 
are needed to describe the geometry of clusters in a deposit with noise reduction. The 
runs with various values of m indicate that, for s >> 1, 

H - ~ ” 1  

and 

( 5 )  

with the effective exponents depending weakly on m. Exponents for several m values 
are given in table 1. The complex behaviour of the noise reduction model is demon- 
strated by this table in which the values of the quantities do not depend monotonically 
on m. 

Figure 5. This figure demonstrates the scaling of (A)  the mean tree height, H ,  and (B)  the 
width, W, for m = 10 as a function of the number of sites belonging to the trees (s) .  

Table 1. The exponent ull (v-) describing the dependence of the length (width) of trees 
on the number of sites s. The effective fractal dimension Der calculated using (9) is also 
indicated. 

~ 

1 0.64 0.56 1.64 
2 0.64 0.56 1.64 
3 0.65 0.56 1.63 
5 0.67 0.55 1.60 

10 0.67 0.57 1.58 
20 0.66 0.60 1.57 
30 0.65 0.61 1.57 
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Next we investigated the correlations along the lateral direction x (parallel to the 
deposition line) using the expression 

This function is related to the tangential correlation function which was introduced 
for the usual DLA clusters (Meakin and Vicsek 1985, Kolb 1985) in order to describe 
the internal anisotropy of diffusion-limited aggregates. The results for the lateral 
correlation function with m = 1 and m = 20 are shown in figures 6 ( a )  and 7 ( a )  
respectively. 

The c k ( x )  curves we plotted exhibit a number of interesting features. For all values 
of h they have a well pronounced minimum followed by a less apparent maximum. 
The position of the minima x, , , (h)  depends on the height at which the correlation 
function was calculated. To study the possible scaling of x , , , (h )  we plotted this 
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Figure 6. The lateral correlation functions C h ( x )  for m = 1 ( D L A ) ,  where h is the height 
at which the correlations in the x direction (along the deposition line) were determined 
are displayed on ( a ) .  ( b )  shows the scaling of the correlation function according to the 
scaling form given in equation (8) .  
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quantity against h on a log-log plot (figure 8) for three selected values of m. It can 
be seen from this figure that the position of the minima scales with h according to an 
exponent 0.8 < S < 0.9 if m changes between 1 and 20. It is plausible to assume that 
xmi,(h) is proportional to the mean distance of the trees at the height h. Then, e.g., 
for m = 20 the exponent 6 = 0.9 is consistent with the previously found vll/ U,. = 0.89 
which means that the width and the separation of the trees scale as a function of h 
approximately the same way. 

We have also attempted to scale the correlation function ch(x) measured at different 
heights ( h )  onto a common curve. Figure 6( b )  shows that for the case m = 1 (diffusion- 
limited deposition) the correlation function can be described quite well in terms of 
the scaling form 

ch (x) - h-"f(  x/ h' ) (8) 

where the exponents (Y and 6 have values of 0.275 and 0.8, respectively. Figure 7(b) 

-41 I YI I I I I 
-3 -2  -1  0 1 2 3 

Lnlh -o.90xl 

Figure 7. ( a )  shows the correlation functions C,(x) obtained at eight different values of 
A averaged over a small range for the case m = 20. ( b )  shows similar correlation functions 
for a noise reduction parameter m = 30 which has been scaled using the scaling form of 
equation ( 8 ) .  
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I I I I 1 I I I 
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In lh l  

Figure 8. Scaling of the minima x,, , (h) of the lateral correlation function with the height 
h. The straight line fitted to the data indicates that for various m the minima diverge with 
h according to an exponent -0.8-0.9. 0, m = 1; A,  m = 5 ;  0, m = 20. 

shows a similar plot for the case m = 30. In this case we find that a = 0.39 and S = 0.9 
give the best data collapse. These results indicate that the exponents a and S are not 
universal and suggest that in the limit m+cc (and for s + c o )  the exponent 6 may 
approach the value of 1.0. If it is so, then only one exponent (a) may be needed in 
this asymptotic limit. This may be related to the observation that for large noise 
reduction parameters ( m )  the exponents vll and v L  appear to converge (Nittmann and 
Stanley 1986, Thompson 1987, Meakin 1987a, b). 

Finally, the behaviour of Ch(x )  is non-trivial for x<< h. In the case of m = 1 the 
slope of the curve seems to approach the limiting value amin = 0.42 which indicates 
that the decay of correlations in the lateral direction is faster than in the direction 
parallel to the growth. The situation is less clear for m > 1 where the correlation 
function probably has a zero slope for x<< h. This is an interesting result which has 
its drigin in the dendritic structure of the trees. There is either a branch growing out 
from the main stem horizontally at a given height (and resulting in a constant local 
density) or no branch at all (no contribution to the correlation function). 

4. Discussion 

Our results show that noise reduction applied to diffusion-limited deposition has a 
dramatic effect on the shape of the clusters and it also changes their scaling properties. 
Although the trees grown on the substrate and the branches of a noise-reduced DLA 
cluster are visually similar, there are unexpected differences in the scaling powers. 

It is interesting to note that in spite of the well pronounced algebraic dependence 
of p ( h )  on h the exponents describing this decay do not seem to be trivially related 
to the decay of density in the corresponding noise-reduced DLA clusters grown from 
a single seed. For example, in a deposit with m = 20, p ( h )  - while in the radial 
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case, p ( R )  - R-0.45 (Meakin 1987a, b, Thompson 1987) where R is the distance from 
the seed particle. 

We have demonstrated that the trees are very anisotropic. Thus their width and 
length scale with different exponents. This seems to be different from the situation 
with the single-particle seed geometry where recent studies (Thompson 1987, Meakin 
1987a, b) indicate a finally isotropic scaling. However, some of our results (from the 
correlation function C,,(x)) do suggest that the scaling might be isotropic in the 
asymptotic limit m+m, s + m .  Since the two lengths (the height and the width) of 
the trees scale differently, the clusters are not self-similar fractals and one needs a 
modified definition for the effective fractal dimension for such objects. Using the 
expression introduced by Nadal et a1 (1984) for the case of directed lattice animals 
and DLA clusters 

where the v values corresponding to the different noise reduction parameters have to 
be taken from table 1. The effective fractal dimension decreases as a function of 
increasing m = 1 and seems to converge to the value 1.57. The data of table 1 should 
be compared with the asymptotic fractal dimension - 1.55 of noise-reduced DLA clusters 
on the square lattice. We find that the noise-reduced deposits are somewhat less 
compact than ordinary diffusion-limited aggregates. Furthermore, they do not 
approach, for the considered sizes, the ideal needle limit with vll =$  and vL = f 
(Turkevich and Scher 1985, Ball er a1 1985). Meakin and Family (1986) obtained, for 
DLA ( m  = 1) in the limit L<< h, different scaling in the parallel and perpendicular 
directions. On the basis of our simulations carried out for L >> h we conclude that-at 
least for the sizes we studied here-the trees grown by the noise-reduced diffusion- 
limited deposition are self-aff ine fractals (Mandelbrot 1986). 
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